Randomness of Tickwise Prices May Forecast the Stock Performance
-A Study on the Randomness of Stock Prices by using the RMT-test-

Xin Yang, Yuuta Mikamori, and Mieko Tanaka-Yamawaki

Department of Information and Knowledge Engineering, Graduate School of Engineering, Tottori University, JAPAN
CONTENT

• Motivation
• About the RMT-test
• Relationship between randomness and safety of stock prices
• Conclusion
Motivation

- **Purpose** ⇒ measuring the security levels of stock investments.

- **Method** ⇒ the RMT-test (quantitative version) as a tool to measure the randomness.
CONTENT

• Motivation
• About the RMT-test
• Relationship between randomness and safety of stock prices
• Conclusion
Rapid progress of information technology has made data collection much easier than ever.

Statistical analysis is performed in various fields. In particular,

Principal Component Analysis (PCA) by Random Matrix Theory (RMT)

Use the RMT-PCA to extract useful information
Subtract noisy stocks by the RMT

Extract sectors of strong correlation

Major sectors aggregate (condensed)

Indicator for investment
RMT-PCA: Background of the RMT-test

Yamamoto and Tanaka-Yamawaki (2012)

\[Q = \frac{L}{N} > 1 \]

\(N \): # of Stocks
\(L \): Data length

Q = 1.31
N = 490
L = 641

Random components
Principal components
The RMT-test

Random Matrix Theory

Measure the randomness of given data sequences
RMT-PCA: Background of the RMT-test

Cross Correlation Matrix

Eigenvalues

Histogram of eigenvalues

Draw P_{RMT}

Compare
Theoretical formula in \mathcal{P}_{RMT}

$$L \to \infty, \; N \to \infty ; \; Q = \frac{L}{N}$$

$$\mathcal{P}_{RMT} (\lambda) = \frac{Q}{2\pi\lambda} \sqrt{(\lambda_+ - \lambda)(\lambda - \lambda_-)}$$

$$\lambda_\pm = (1 \pm 1/\sqrt{Q})^2$$
Theoretical formula in P_{RMT}
Eigenvalues of real data

Real Data

Correlation Matrix

Eigenvalue Distribution
The RMT test

A tool to measure the randomness of a given data string of any kind
Eigenvalues of real data

$Data_1, \ldots, Data_{(L)}, Data_{(L+1)}, \ldots, Data_{(2L)}, \ldots, \ldots, Data_{(NL)}, \ldots Data$
Eigenvalues of real data

Data_1, \ldots, Data_{(L)} \quad Data_{(L+1)}, \ldots, Data_{(2L)}, \ldots, \ldots, Data_{(NL)} \ldots Data
Eigenvalues of real data

$\text{Data}_1, \ldots, \text{Data}_{(L)}$ $\text{Data}_{(L+1)}, \ldots, \text{Data}_{(2L)}$ $\ldots, \ldots, \text{Data}_{(NL)}$...Data

N: Num. of data

L: Data length

Discard
Eigenvalues of real data

\[g_{i,j} = \frac{A_{i,j} - \langle A_j \rangle}{\sqrt{\langle A_j^2 \rangle - \langle A_j \rangle^2}} \]

Normalization: \((\text{AV.} = 0, \text{S. D.} = 1)\)
Eigenvalues of real data

\[
C = \frac{1}{L} \begin{pmatrix}
 g_{1,1} & g_{1,2} & \cdots & g_{1,L} \\
g_{2,1} & g_{2,2} & \cdots & g_{2,L} \\
 \vdots & \vdots & \ddots & \vdots \\
g_{N,1} & g_{N,2} & \cdots & g_{N,L}
\end{pmatrix}
\begin{pmatrix}
 g_{1,1} \\
g_{1,2} \\
 \vdots \\
g_{1,L}
\end{pmatrix}
\begin{pmatrix}
 g_{2,1} \\
g_{2,2} \\
 \vdots \\
g_{2,L}
\end{pmatrix}
\cdots
\begin{pmatrix}
 g_{N,1} \\
g_{N,2} \\
 \vdots \\
g_{N,L}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 1 & C_{1,2} & \cdots & C_{1,N} \\
C_{2,1} & 1 & \cdots & C_{2,N} \\
 \vdots & \vdots & \ddots & \vdots \\
C_{N,1} & C_{N,2} & \cdots & 1
\end{pmatrix}
\]

\[
C_{i,j} = \frac{1}{L} g_i g_j
\]
Eigenvalues of real data

Eigenvalue Distribution
Qualitative evaluation of the RMT-test

Passes the RMT-test

Fails the RMT-test

The same Q
Quantitative evaluation of RMT-test

We employ the moment method in order to compare subtle differences of randomness

\[\mu_k = E(\lambda^k) = \int_{\lambda_-}^{\lambda_+} \lambda^k P_{\text{RMT}}(\lambda) d\lambda \]

\[m_k = \frac{1}{N} \sum_{i=1}^{N} \lambda_i^k \]
Quantitative evaluation of RMT-test

\[\mu_1 = 1 \]
\[\mu_2 = 1 + 1/Q \]
\[\mu_3 = 1 + 3/Q + 1/Q^2 \]
\[\mu_4 = 1 + 6/Q + 6/Q^2 + 1/Q^3 \]
\[\mu_5 = 1 + 10/Q + 20/Q^2 + 10/Q^3 + 1/Q^4 \]
\[\mu_6 = 1 + 15/Q + 50/Q^2 + 50/Q^3 + 15/Q^4 + 1/Q^5 \]
Quantitative evaluation of RMT-test

\[\mu_k = E(\lambda^k) = \int_{\lambda_-}^{\lambda_+} \lambda^k p_{\text{RMT}}(\lambda) \, d\lambda \]

\[m_k = \frac{1}{N} \sum_{i=1}^{N} \lambda_i^k \]

Error \(=|m_k/\mu_k - 1| \times 100\%\)

Smaller error = Higher randomness
CONTENT

• Motivation
• About the RMT-test
• Relationship between randomness and safety of stock prices
• Conclusion
Application to Stock Prices

- Good to compare the randomness of physical random numbers, and pseudo random numbers\(^\text{[1]}\)

- Real application of this method would be the real data of relatively low randomness

Application to Stock Prices

Randomness of tickwise fluctuation

VS.

Profit
Application to Stock Prices

Data:

- **TOPIX500 tick data in 2007-2009 per minute**

- **Tokyo Stock Price Index** commonly known as **TOPIX**, along with the Nikkei 225, is an important stock market index for the Tokyo Stock Exchange (TSE) in Japan

- **TOPIX500 ⇒ Component stocks in the TOPIX Core 30, the TOPIX Large 70 and the TOPIX Mid 400**
Application to Stock Prices

Length of tick data (Information/Com.)

<table>
<thead>
<tr>
<th>Code</th>
<th>year</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>9984</td>
<td></td>
<td>66,065</td>
<td>64,608</td>
<td>64,859</td>
</tr>
<tr>
<td>4676</td>
<td></td>
<td>54,350</td>
<td>55,363</td>
<td>58,992</td>
</tr>
<tr>
<td>9684</td>
<td></td>
<td>51,461</td>
<td>53,815</td>
<td>60,018</td>
</tr>
<tr>
<td>4739</td>
<td></td>
<td>48,776</td>
<td>44,136</td>
<td>38,885</td>
</tr>
<tr>
<td>4716</td>
<td></td>
<td>44,165</td>
<td>40,223</td>
<td>34,345</td>
</tr>
<tr>
<td>9401</td>
<td></td>
<td>42,514</td>
<td>47,139</td>
<td>49,568</td>
</tr>
<tr>
<td>4704</td>
<td></td>
<td>40,456</td>
<td>42,495</td>
<td>43,712</td>
</tr>
<tr>
<td>9409</td>
<td></td>
<td>35,096</td>
<td>39,492</td>
<td>42,662</td>
</tr>
<tr>
<td>MAX Length</td>
<td>66338</td>
<td>66338</td>
<td>65945</td>
<td></td>
</tr>
</tbody>
</table>
Application to Stock Prices

Data Processing: Part 1

<table>
<thead>
<tr>
<th>time</th>
<th>ticker1</th>
<th>ticker2</th>
<th>ticker3</th>
<th>ticker4</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>502</td>
<td>3810</td>
<td>1902</td>
<td></td>
</tr>
<tr>
<td>09:01</td>
<td>502</td>
<td>3801</td>
<td>1906</td>
<td></td>
</tr>
<tr>
<td>09:02</td>
<td>508</td>
<td>3806</td>
<td>1905</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exclude stocks of short data length</td>
</tr>
<tr>
<td>11:00</td>
<td>521</td>
<td>3788</td>
<td>1910</td>
<td></td>
</tr>
<tr>
<td>12:30</td>
<td>515</td>
<td>3788</td>
<td>963</td>
<td></td>
</tr>
<tr>
<td>12:31</td>
<td>518</td>
<td>3792</td>
<td>953</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>522</td>
<td>3820</td>
<td>853</td>
<td></td>
</tr>
</tbody>
</table>
Application to Stock Prices

Data Processing: Part 2

| Trading time | AM: 09:00⇒11:00
| PM: 12:30⇒15:00 |
|---------------|-----------------|
| Data length/day | 272 |
| Data length/year | 2007 : 245day × 272 - 2*151 = 66338
| | 2008 : 245day × 272 - 2*151 = 66338
| | 2009 : 243day × 272 - 151 = 65945 |
| Data for test | Stocks of >80%,real prices,
| | (substituted part<20% of total length)
| | 2007 : 211 stocks
| | 2008 : 240 stocks
| | 2009 : 229 stocks |
Application to Stock Prices

- **Data Processing: Part 3**

- Discard

\[\text{Data}_1, \ldots, \text{Data}_{(L)} \]

\[\text{Data}_{(L+1)}, \ldots, \text{Data}_{(2L)} \]

\[\ldots, \ldots, \text{Data}_{(NL)} \]

\[\ldots\text{Data} \]
Application to Stock Prices

• Data Processing: Part 3

Randomness of 2009

Data, …, Data, …, Data, Data, …, Data, Data, …, Data, …, Data

relationship

Log-return in 2010
Application to Stock Prices

- Data Processing: Part 3

Randomness of 2009 relationship Log-return in 2010
Application to Stock Prices

- Experiment

Selection of the parameter Q
Application to Stock Prices

- **Experiment**
 - $Q>1$ is a condition that the RMT can be applied to data, and a $N \geq 100$ would require at least the lower limit value of N
 - The data fixed-length of each year is about 60 thousand
 - Cut the data into pieces by using $N=100$, the Q can be chosen from the range of $[1, 6.6]$, therefore, $Q=2,3,4,5,6$ are the possible integer values for the parameter Q
Application to Stock Prices

The analysis are done for each value of Q and the performance in the following year (January - December, 2010) of the stocks of the highest randomness (H) and the lowest randomness (L) are compared.
Application to Stock Prices

Optimal Q is 4
Application to Stock Prices

- Experiment processing

1. \(Q = 4 \)
2. Compute the **randomness** by the RMT-test
3. Sort the stocks according to the randomness to choose the first and the last
4. Investigate the **profit** (log-return) of each stock in the next year
Application to Stock Prices

NIKKEI AVERAGE CHART (2007-2009)

- Year 2007: Significant dropdown in Yen value.
- Year 2008: Steep decline marked by green arrow.
- Year 2009: Recovery shown by red arrow, indicating upward trend.
Top 10 recording of decline in TOPIX (until 2010)

<table>
<thead>
<tr>
<th>rank</th>
<th>%</th>
<th>TOPIX</th>
<th>y/m/d</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-14.2</td>
<td>1793.90</td>
<td>1987/10/20</td>
<td>Stock prices fall concerned about the Louvre Accord</td>
</tr>
<tr>
<td>2</td>
<td>-9.52</td>
<td>864.52</td>
<td>2008/10/16</td>
<td>Concern for the future of the financial and economic equity by significant setback NY</td>
</tr>
<tr>
<td>3</td>
<td>-8.75</td>
<td>32.32</td>
<td>1953/3/5</td>
<td>Stalin seriously ill</td>
</tr>
<tr>
<td>4</td>
<td>-8.04</td>
<td>899.01</td>
<td>2008/10/8</td>
<td>Fears of the recession of U.S. that Yen appreciation and the NY stock fall</td>
</tr>
<tr>
<td>5</td>
<td>-7.52</td>
<td>806.11</td>
<td>2008/10/24</td>
<td>Significant downward revision of earnings forecast of foreign demand high-tech companies</td>
</tr>
<tr>
<td>6</td>
<td>-7.47</td>
<td>159.33</td>
<td>1970/4/30</td>
<td>Global economic crisis of IOS stock prices</td>
</tr>
<tr>
<td>7</td>
<td>-7.40</td>
<td>746.46</td>
<td>2008/10/27</td>
<td>Appreciation of the yen and downward revision of expected corporate earnings</td>
</tr>
<tr>
<td>8</td>
<td>-7.10</td>
<td>2069.33</td>
<td>1990/4/2</td>
<td>News about Insurance holding bulk sale</td>
</tr>
<tr>
<td>9</td>
<td>-7.10</td>
<td>840.86</td>
<td>2008/10/10</td>
<td>Bankruptcy of life insurance, NY stocks fall sharply</td>
</tr>
<tr>
<td>10</td>
<td>-7.05</td>
<td>889.23</td>
<td>2008/10/22</td>
<td>Concerns about the downturn of high-tech companies</td>
</tr>
</tbody>
</table>

<Reference> Tokyo Stock Exchange
Quantitative evaluation of RMT-test

\[\text{Error} = |\frac{m_6}{\mu_6} - 1| \times 100\% \]

Smaller error = Higher randomness
Application to Stock Prices

The ranking of randomness by using the tick data of 2009

| Rank | Sectors | Code | |Error|
|------|------------------|------|------------------|
| 1 | Electric/Gas | 9508 | 25.5 |
| 2 | Electric/Gas | 9509 | 28.1 |
| 3 | Electric/Gas | 9506 | 31.6 |
| 4 | Electric/Gas | 9502 | 33.2 |
| 5 | Retail Trade | 2651 | 36.4 |
| | | | |
| 225 | Nonferrous Metals| 5713 | 1039.5 |
| 226 | Electric Appliances| 4902 | 1072.4 |
| 227 | Machinery | 6301 | 1090.9 |
| 228 | Iron and steel | 5541 | 1128.2 |
| 229 | Wholesale Trade | 8058 | 1249.5 |
Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness

Application to Stock Prices

Highest randomness stock in 2009 ➔ Perform better in 2010

Highest randomness

Lowest randomness
The ranking of randomness by using the tick data of 2007

| Rank | Sectors | Code | |Error|
|------|----------------------------------|-------|---------|
| 1 | Electric/ Gas | 9504 | 26.4 |
| 2 | Machinery | 6460 | 37.6 |
| 3 | Electric/ Gas | 9506 | 38.2 |
| 4 | Electric/ Gas | 9508 | 43.3 |
| 5 | Information & Communication | 4676 | 44.9 |
| | | | |
| 207 | Electric Appliances | 6506 | 740.9 |
| 208 | Nonferrous Metals | 5802 | 797.3 |
| 209 | Chemicals | 4043 | 799.8 |
| 210 | Iron and steel | 5541 | 1001.5 |
| 211 | Transportation Equipment | 7201 | 1209.6 |
Application to Stock Prices

Highest randomness stock in 2007 → Perform better in 2008

- Highest randomness
- Lowest randomness

Bankrupt of Lehman Brothers

Log-return

2008/1/7 2008/2/7 2008/3/7 2008/4/7 2008/5/7 2008/6/7 2008/7/7 2008/8/7 2008/9/7 2008/10/7 2008/11/7 2008/12/7

9504 7201 NIKKEI
Application to Stock Prices

The stock has the highest randomness is safer
Application to Stock Prices

Highest randomness in 2008
Perform better in 2009?
Application to Stock Prices

The ranking of randomness by using the tick data of 2008

| Rank | Sectors | Code | |Error|
|------|-----------------------------|------|----------------|
| 1 | Banks | 8308 | 28.4 |
| 2 | Machinery | 7004 | 30.9 |
| 3 | Transportation Equipment | 7211 | 31.8 |
| 4 | Electric/ Gas | 9502 | 32.3 |
| 5 | Electric/ Gas | 9508 | 36.3 |
| | | | |
| 236 | Electric Appliances | 4902 | 1604.0 |
| 237 | Electric Appliances | 6954 | 1611.2 |
| 238 | Electric Appliances | 7752 | 1646.9 |
| 239 | Securities | 8604 | 2059.9 |
| 240 | Shipping | 9104 | 2097.5 |
Randomness in all of the 14 industrial sectors

Highest randomness stock in 2008 ➔ Perform better in 2009? ✗

2008 is Abnormal!!!

Lowest randomness

Highest randomness
Application to Stock Prices

The ranking of randomness by using the tick data Jan-Aug. ’08

| Rank | Sectors | Code | |Error|
|------|-----------------------|------|------|
| 1 | Electric/ Gas | 9506 | 11.6 |
| 2 | Electric Appliances | 6728 | 13.1 |
| 3 | Foods | 2267 | 19.1 |
| 4 | Electric/ Gas | 9502 | 19.1 |
| 5 | Retail Trade | 2685 | 22.2 |
| 230 | Electric Appliances | 6762 | 183.0|
| 231 | Electric Appliances | 6503 | 183.7|
| 232 | Banks | 8306 | 190.0|
| 233 | Securities | 8604 | 222.8|
| 234 | Transportation Equipment | 7201 | 257.9|
Countermeasure

Highest randomness stock in Jan-Aug. ’08 ➞ Perform better in 2009

Highest randomness

Lowest randomness

Countermeasure
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer demand</td>
<td>Stocks sensitive to the OUTSIDE profit</td>
</tr>
<tr>
<td>Inner demand</td>
<td>Stocks sensitive to the INSIDE profit</td>
</tr>
<tr>
<td>Activity sensitive</td>
<td>Stocks sensitive to the economic activity</td>
</tr>
<tr>
<td>Defensive</td>
<td>Stocks insensitive to economic activity</td>
</tr>
<tr>
<td>Consumer</td>
<td>Stocks of consumer’s needs</td>
</tr>
<tr>
<td>Interest sensitive</td>
<td>Stocks sensitive to the interest rate</td>
</tr>
<tr>
<td>Market sensitive</td>
<td>Stocks sensitive to the market trend</td>
</tr>
</tbody>
</table>
Related stock classification

<table>
<thead>
<tr>
<th>Outer demand</th>
<th>「65 : Electrical precision machine」, 「70 : Automobile」</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner demand</td>
<td>「17 : Construction」, 「88 : Real estate」</td>
</tr>
<tr>
<td>Activity sensitive</td>
<td>「30 : Material・Chemistry」, 「60 : Machine」</td>
</tr>
<tr>
<td>Defensive</td>
<td>「20 : Foods」, 「45 : Medicine」, 「95 : Electric・Gas」</td>
</tr>
<tr>
<td>Consumer</td>
<td>「81 : Retail」, 「90 : Transportation」, 「94 : Telecom/Service」</td>
</tr>
<tr>
<td>Interest sensitive</td>
<td>「83 : Bank」, 「85 : Finance」</td>
</tr>
<tr>
<td>Market sensitive</td>
<td>「50 : Energy resource」, 「54 : Steel/Metal」, 「80 : Trading/Wholesale」</td>
</tr>
</tbody>
</table>
Result: each 3 months

Yamamoto, Tanaka-Y (2012)

Subprime Lending Problem

Lehman Shock

Defensive (D) - Stocks independent of Economic Activity

Consumer (C) - Stocks of consumer’s needs

Interest sensitive (F) - Stocks sensitive to the Interest Rate

2007 2008 2009

1-3 4-6 7-9 10-12 1-3 4-6 7-9 10-12 1-3 4-6 7-9 10-12

0% 20% 40% 60% 80% 100%

1-3 4-6 7-9 10-12 1-3 4-6 7-9 10-12 1-3 4-6 7-9 10-12
Application to Stock Prices

Randomness top 5

- **Stocks independent of Economic Activity**
- **Stocks sensitive to the overseas profit**
- **Stocks sensitive to the domestic profit**
- **Stocks sensitive to the economic activity**
- **Stocks sensitive to the Interest Rate**

<table>
<thead>
<tr>
<th>Year</th>
<th>O</th>
<th>I</th>
<th>A</th>
<th>F</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>100%</td>
<td>80%</td>
<td>60%</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>2008</td>
<td>100%</td>
<td>80%</td>
<td>60%</td>
<td>40%</td>
<td>20%</td>
</tr>
<tr>
<td>2009</td>
<td>100%</td>
<td>80%</td>
<td>60%</td>
<td>40%</td>
<td>20%</td>
</tr>
</tbody>
</table>
The stock having the highest randomness is safer

- RMT-test successfully extracted the stock which wasn’t affected by the Lehman shock
- After the ‘big earthquake’ of stock market
 - Used the data before the ‘big earthquake’ only

The sector extracted by RMT-PCA has a high randomness
Thank you